
NASA/TMm1998-112225

Toward a More Robust Pruning Procedure
for MLP Networks

Slawomir W. Stepniewski

Recom Technologies, Inc., Ames Research Center, Moffett Field, California

Charles C. Jorgensen

Ames Research Center, Moffett Field, California

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035-1000

April 1998

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934
Price Code: A03

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161
Price Code: A03

Abstract

Choosing a proper neural network architecture is a problem of great practical

importance. Smaller models mean not only simpler designs but also lower variance

for parameter estimation and network prediction. The widespread utilization of
neural networks in modeling highlights an issue in human factors. The procedure of

building neural models should find an appropriate level of model complexity in a
more or less automatic fashion to make it less prone to human subjectivity. In this

paper we present a Singular Value Decomposition based node elimination technique
and enhanced implementation of the Optimal Brain Surgeon algorithm. Combining

both methods creates a powerful pruning engine that can be used for tuning feed-

forward connectionist models. The performance of the proposed method is demon-

strated by adjusting the structure of a multi-input multi-output model used to

calibrate a six-component wind tunnel strain gage.

1. Introduction

In nonlinear regression problems employing feed-
forward neural networks, it is important to reduce

model complexity in order to decrease the parameter

variance. This may be at the expense of a slower

growing model bias. It is commonly argued in the
neural network community that neural network size

reduction may improve model generalization, i.e., its

response accuracy to unseen stimulations.

Optimal Brain Surgeon (OBS), proposed by Hassibi
and Stork (ref. 1), is an excellent framework for

removing redundant weights. It relies on a local

approximation of the learning error increase when

the current weight settings w are changed by
some Aw:

1
= -"AwXHAw (1)

2

where H = c)2E/o3w 2 is a symmetric matrix of

second order derivatives (Hessian) or its suitable

approximation. Elements of H are constant for
models that are linear in parameters. For feed-
forward neural networks considered here we assume

the elements are slowly changing around local

minima. Imposing a single equality constraint,
Aw i + wi = 0, which forces the i-th weight to vanish,

an estimation of the minimal impact of removing a

single connection Si = min(AE) may be found. Si is
Aw

called a weight saliency coefficient. Using the

analytical approach of Lagrange multipliers to find

the minimum of this quadratic programming

problem, subject to the above constraint, a fairly

simple solution is obtained (ref. 1):

1 w2 wi

Si- 2 eTH-lei ' Aw= eTH_le iH-lei
(2)

where e i is the i-th unit vector. The saliency coeffi-

cient Si is calculated for all the weights, and the
connection having smallest Si is selected for elimi-

nation using the appropriate weight update Aw. The

paradigm based on equation (1) has been extended

to approximate the removal of some other meaning-
ful combinations of connections, e.g., entire unit

deletion (ref. 2). Pedersen (ref. 3) proposes another
extension that estimates changes in the network

generalization rather than the learning error.

The approximation (eq. I) comes from the
expansion of the Taylor series in which all terms

except the second order are dropped. It is usually a

valid assumption that the first-order term (gradient)

is negligible for locally identified neural models.

Besides this assumption, the matrix H in equa-
tion (1) should be conditioned so that it is positive
definite. This recommendation comes from the

observation that for a reasonably trained network

and large changes to the weight vector we should

not expect the error to decrease. For the indefinite

Hessian, a locally negative curvature will suggest,

however, that the error could be substantially

lowered given sufficiently large steps. In such a

case,wecandiscardtoo"optimistic,"negative
saliencyvaluesortry tomodifytheHessianmatrix
to makeit positivedefinitein thefirstplace.This
canbeachieved,forexample,byusingmethods
reviewedin reference4.

Foranerrorfunctionof theform

J

(3)

an approximation of the Hessian matrix that is

guaranteed to be positive semidefinite (and works

well in practice) could be obtained from H = jTj,

where J = [Jji] = 03sj/03wi is the Jacobian matrix.

Instead of inverting this matrix, the positive definite

inverse n -1 = (jTj + #i) -1 ' # > 0 (e.g.,/.t = 10-3),

may be calculated using a recursive formula similar

to the RLS (recursive least squares method) with

infinite memory, i.e. (ref. 5)

H_ 1 = (1/p)I

1
H_I1 =HJ 1 T-1 [Hjljj.][H_Ijj.] T

1+Jj.Hj Jj.

j=l NxP

(4)

where Jj. is thej-th row of the Jacobian matrix

(treated as a column vector), N is the size of the

training sample, and P is the number of network

outputs. Hassibi and Stork (ref. 1) suggested using

the gradient, gj = 03Ej/0 3 w (j = 1..... N) in place

of Jj,. This in fact produces a formally different

criteria for connection pruning that considers, under

certain simplifying conditions, the ratio of the

squared weight value to the weight variance
estimation (refs. 6 and 7).

2. Efficient OBS Implementation

In the original OBS algorithm a -l is evaluated

after one or a fixed number of weights are removed.

When more than one weight is removed between

independent inverse Hessian evaluations, the current
H -1 should be corrected to reflect the exclusion of

the i-th weight (i-th row and column) from H. The

corresponding operation on H -1 is (ref. 3)

1
H_ll =H_ l eTH_lei

followed by the deletion of the zeroed i-th column

and row in H_II (matrix dimensions are reduced

by 1).

Frequent evaluation of H -1 , especially after remov-

ing every individual weight, may be unnecessary;

this tends to make the pruning procedure rather
inefficient. On the other hand, it is hard to determine

in advance the number of weights that could be

removed between subsequent evaluations of H -1 .

Certainly, in the beginning the pruning process will

tend to eliminate more weights than at later stages. It

is the pruning algorithm itself which should decide
how many weights could be removed and when to

retrain the network and evaluate a new approxima-

tion of H -I .

Equation (5) does not take into account that the
remaining weights are modified by the vector Aw.

As pruning progresses, larger weight changes may

violate the assumption of a constant or slowly

changing Hessian. In such a case it may be worth-

while to correct H -1 by applying the Broyden

family update (ref. 8), e.g., the well known BFGS

(Broyden-Fletcher-Goldfarb-Shanno) formula. In the

later stages of the pruning process, the BFGS update

typically contributes to a higher number of weights

being removed and/or a smaller number of overall

iterations (new H -1 evaluations).

A reliable pruning algorithm should exhibit limited

trust in the estimations provided by equation (1).

Even in the early stages of pruning, it could happen
that some values of Si may be incorrect (there exists

another weight producing a smaller error increase)

or Aw may be inaccurate, even erroneous (a few

training cycles are able to compensate connection

removal that Aw cannot achieve).

Application of this rather straightforward approach

to the construction of the OBS based pruning routine

produces an algorithm that outperforms the original

one in both speed and efficiency. The following

steps outline an efficient modification to the basic

OBS paradigm:

. Calculate a positive definite approximation of

H -1 ; set the number of failures to zero (the

number of consecutive events when the training
error cannot be reduced below a certain threshold).

H-I2. Calculate new saliency values based on .

3. Try to delete the feasible weight with the smallest
salience using the OBS update (eq. 2) only.

4. If the error increase rate for the new weights is

below a certain threshold (e.g., 3%) null the

number of failures, correct H -1 for the deleted

variable (eq. 5), optionally update H -1 using the

BFGS formula, and then go to step 2. If the error is
above the threshold, increment the number of

failures, remove the current salience from consid-

eration, and record which weight caused the
smallest increase of error in the recent series of

failures.

. If the number of failures reaches a limit, attempt to

remove the weight which most recently caused the

smallest increase in error; use a regular OBS

update followed by a short retraining. If no success
was achieved since the last extensive retraining

abort the pruning procedure.

6. If the number of failures exceeds the limit, perform

an extensive network training.

7. Go to step 1.

The above algorithm has several distinct advantages

in comparison to the basic OBS method (ref. 1).

The changes made to the original paradigm make

the pruning procedure less sensitive to imperfect

estimation of saliency values. Moreover, the modifi-

cations attempt to reduce such CPU intensive tasks

as full retraining and H -! evaluation.

Through direct network testing, the modified

method verifies whether the OBS weight update is

correct and does not lead, by chance, to an excessive

increase in error (step 4). Our observations suggest

that especially for partially pruned networks, the

OBS weight update may be occasionally inappro-

priate even when it is calculated based on a newly

evaluated H -1 . If deletion of a particular link is

unsuccessful, the algorithm does not instantly stop.

It attempts to remove several other weights having

the smallest saliences using the OBS formula only.

If this in turn becomes insufficient, the algorithm

undertakes to find the correct weight update using a

previously applied vector Aw followed by brief

retraining, e.g., 5-10% of iterations as in the full

training phase (step 5). The connection selected for

elimination at this stage is the one that caused the

smallest error increase using the pure OBS update

in the previous attempts. The extensive network

retraining (step 6) is the last resort. It is applied only

when all the previously described efforts have failed.

Figure 1 presents a performance comparison

between the simple (curve A) and the modified

(curve B) OBS based pruning algorithms. The

feedforward neural network, having initial archi-

tecture 6-36-6 (474 adjustable parameters)

was trained on 1373 data points to calibrate the six-

component strain-gage balance used in the wind

tunnel experiments. It is apparent that the proposed

modifications indeed demonstrate a positive impact

on the pruning performance which tends to be

shorter and capable of removing more weights in

total, 154 versus 174 (see also table 1 in section 5).

Equations (2) assume that only one weight is

eliminated at a time while all others, in general,

remain active. In certain situations, especially when

the interconnection pattern is sparse or the network

has a single output, some nodes hold only one

incoming or outcoming connection (note that biases

are treated as incoming synapses). Elimination of

these weights inactivates the entire network node

and consequently disables more adjacent connec-
tions. In such cases, forced deletion of multiple

weights could be estimated by a straightforward

extension of the basic OBS approach as discussed in

reference 2. The Lagrangian function associated

with the problem of minimizing (eq. 1), subject to

one or more equality constraints MT(w + Aw) = 0,

is given by

150

number oi'
weights
removed

100

5O

(S)

5 10 15

itolafiOClS

[inverse _n
evaluations)

2O

Figure 1. Performance comparison of the simple (curve A) and
the modified (curve B) OBS pruning algorithms.

L(Aw,)Q = 1 AwTHAw + _TMT(w + Aw) (6)
2

where A is the vector of Lagrange multipliers and

M e = [ei,ej,e k] is the selection matrix obtained

by combining (in any order) unit vectors that

correspond to the connections that will be deleted.

The solution for Aw should satisfy the following
conditions:

_--_w = HAw + Me), = 0

d-_= MT(w+ Aw)= 0

(7)

Elimination of _, from equation (7) yields Aw,

which in turn allows us to calculate the group
saliency coefficient SM using equation (1). Explicit

expressions for Aw and S M are

Aw = -H-1Me(MTH-1Me)- t_/leTw

1 wTMe(MTH-IMe)-I_ITISM ='_

(8)

When inversion of the MTH-1Me matrix in

equations (8) is a concern, we suggest to find A

and unknown elements of the Aw vector (packed

into one vector x) from the equation

where M = MeMe T is a diagonal matrix having

mii = 1 for those weights that will be deleted and

mii = 0 otherwise. Equation (9) was obtained by

rearranging unknown variables in equation (7). The
final solution could then be extracted form x, i.e.

Aw = (I - M)x - Mw

I(Mw - (I- M)x) T MxSM
Z

(lO)

Our implementation of the OBS based pruning

algorithm does not exploit direct topological

dependencies between weights for saliency estima-
tion. We have found that the Aw vector, determined

from equations (8) or (10), is usually not sufficient
to counteract simultaneous elimination of several

weights. Although the saliency calculated according

to equations (2) would be, to a certain extent, less

accurate (and smaller or, unlikely, equal for positive

definite Hessian) in comparison to equations (8) or

(10), the structure of the proposed weight pruning

algorithm has no problem recovering from incorrect

or imprecise inputs. Instead, we have used an addi-

tional node pruning method (as discussed in the next

section) to improve the efficiency and robustness of

the designing process.

3. Node Pruning

H-1M +(I - M))x = Mw (9)
Connection pruning and node pruning are usually

considered as two alternative techniques for simpli-

fying the neural network structure. In our opinion,

4

however,bothproceduresmayservecomplementary
functionsin thetaskof neuralnetworkcomplexity
reduction,eachonehavingitsownstrengthsand
weaknesses.OurexperiencewiththeOBSalgorithm
(implementedasdiscussedin theprevioussection)
is thatfor nontrivialregressionproblemsthis
methodtendsnottoremoveentirenetworksunits
(hiddennodes).Connectioncancellationthatleads
tonodeeliminationproducesamuchmoredestruc-
tiveimpactonthenetworkthatisoftennotaccu-
ratelycharacterizedbythelocalapproximation
(eq.1).Also,one-shotretrainingprescribedbythe
OBSalgorithmoftenseemstobeinsufficientto
compensatefor theeffectsofnoderemoval,espe-
ciallywhentheacceptablemarginfor theerror
increaseisquitenarrow.Asaresult,thealgorithm
refusestoremovesuchweightsin favorofothers
thatareeasiertocompensate.

Linearalgebraanalysisprovidesthenecessary
foundationtoconstructanodepruningalgorithm
thatdetectsexactornearlylineardependencies
betweenneuronoutputsof thesamehiddenlayer.
InourapproachweusetheSingularValueDecom-
position(SVD)asthediagnostictool.Weutilizea
heuristicstrategyto choose which hidden node may

potentially be removed, as described in Jolliffe
(ref. 9), in the context of variable set reduction.

Furthermore, we calculate the first approximation

of the new weight values for the remaining links

between two neighboring layers to compensate for

node elimination. In the retraining stage that

follows, these values are used as a starting point
for the training procedure.

The SVD based node pruning algorithm focuses on

each hidden layer sequentially. To some extent it

also considers nodes that receive signals from the

current layer. Of course, in case of the strictly

layered, fully connected architecture all receiving

nodes will be located in the next hidden layer (closer

to the network output) or in the output layer. Output

signals of the current hidden layer may be stored in a
matrix A of the form

A_

"1 a} l) a_ l) "'" _'M"(1)
(2)

l a}2) a(22) "" a M

1 a_3) 0(23) "-- a(M3)

: i : ".. "

N data points (1 1)

bias and M _dden nodes

The signals B received by nodes of the subsequent

layer (before being transformed by activation
functions) may be evaluated using the linear equa-

tion B = AW, where W is the matrix of connection

weights linking the two layers. The first row of W

corresponds to the biases of the receiving nodes.

Linear equations t AW = B could be singular or

close to singular due to row or column degeneration
of the matrix A. Since the number of data points N

used for training is higher than the number of

hidden nodes M in the layer under consideration,

N >> M (i.e., we deal with an overdetermined

system of equations), any linear dependency

between columns in A will cause rank deficiency.

This indicates that there possibly exist redundant
nodes in the neural network structure whose outputs

may be substituted by a linear combination of

responses from other nodes. From the point of view

of connection weights, singularity implies that the

solution W to the problem AW = B is not unique.

We are interested in finding weight settings in which
one weight in each column of W, say the i-th row,

would be exactly zero. This corresponds to the
elimination of one network node. The new solution,

W 0, also satisfies the equation AW 0 = B so the

final network performance is not affected. Of course,

in practice, instead of an exact linear dependency, a

near-linear relationship could be encountered. In
such a case AW 0 - B and new weight settings will

cause the network error to increase. To regain the

previous network performance additional retraining

would be required after node removal.

The analysis of A may be performed by decompos-

ing the cross-product matrix

J Since the next layer would likely contain more than one
node it would, rather, be several sets of linear equations,
each one having different right hand side arguments.

5

Y_= ATA = VAV T (12)

or equivalently by performing the SVD factorization

of the original matrix A, i.e.

A = USV T (13)

In equation (12), V is the (M+I)x(M+I) orthogo-

nal matrix (VV T = vTv = I) of Z eigenvectors,

A is the same size diagonal matrix containing
eigenvalues. In equation (13), U is the N x (M + 1)

matrix with orthonormal columns, i.e., uTu = I,

and S = diag(s 1, s2 SM+1) is a non-negative,

diagonal matrix such that A = SS. The diagonal
elements of S are called singular values of the
A matrix.

Factorizations defined by equation (12) or (13) are

explored in principal component analysis (PCA) to

diagnose multicollinearity. This approach is particu-

larly useful when more than two regressors are

expected to form a near-linear relationship. Before

performing decomposition (eq. 12 or 13), in the

standard PCA analysis, variables (columns of A) are

typically centered by subtracting from each one its
average values (Z/(N - 1) then becomes the covari-

ance matrix). When the range/units of the variables

are substantially different, by further scaling each

column of A (typically, dividing it by the standard
deviation) we obtain standardized variables
(Z/(N - 1) is then called the correlation matrix).

In our approach, similarly with reference I0, we
analyze "raw" data stored in A. To some extent, the

lack of centering is compensated for by adding one

more degree of freedom to A through the first
column of ones. Signal shiftingnsuch as when a
particular node is generating a sequence r/(k)

(k = 1..... N) while another neuron response is
Clr/(k) + c2 (c I , c2 are constant values)--does not

interfere with the correct diagnosis of a linear

relationship between those nodes.

Our node pruning algorithm starts from the SVD

factorization of the A matrix (eq. 11). The SVD

method is known to be numerically stable and well

suited for diagnostics of pathological cases, such as

near rank deficiency, associated with solving least

squares (LS) problems. In the SVD factorization

A = USV T, the matrix V defines a linear transfor-

mation (rotation) of coordinates which, when

applied to A, creates a new set of orthogonal varia-

bles ,4,, obtained as linear combinations of the

original signals. Utilizing the property VV T = I

we can write

B = AW = AvvTw = .4,%7V (14)

The operation defined by equation (14) is visualized

in figure 2. Conceptually, an additional layer of so

called "singular nodes" is introduced after the
current layer. The new variables stored in columns

of ._ are linearly independent, and S-1 contains

scaling factors that normalize column vectors of ,_

to the unit length. From equations (13) and (14) we
have

= US) AS -1 : U (15)
if S-1 exists

w
V VrW

Figure 2. Graphical interpretation of the transformation (eq. 14).

Thediagonalvaluesof Smaybetreatedassome
sortofindicatorsof the"singularnode"strength,z

A relatively small diagonal value of S (in compari-

son to the biggest singular value) implies that there

exists some subset of the original signals which are

close to being linearly dependent. In such a case we

could try to remove one of the signals (network

node) associated with the weakest (last) "singular
node," hoping that this will not cause unrecoverable

deterioration of the network performance. Figure 3

shows singular values for the hidden layer of the
neural network 6-36-6 examined in section 2.

Clearly, the last singular values are small and

elimination of one or more hidden nodes may be

possible.

The key issue of the algorithm is how to make

inferences about the importance of the original

nodes based on the singular values. Our task is not

to remove a "singular node" (this will leave the

number of original nodes intact but will disturb

connection weights between layers) but somehow

guess which of the original nodes may be elimi-

nated. Jolliffe (ref. 9, chap. 6.3) discusses several

heuristic approaches in the context of covariance or

correlation matrices that we have adopted in our
algorithm.

Basically, the problem may be approached from two
opposite directions. One method is to indicate which

of the original nodes shouM not be removed by

associating strong "singular nodes" with the real

counterparts and then remove one of the remaining
nodes that may potentially be redundant. Another

method is to choose (or, more appropriately, guess)

directly which node may be unnecessary by associ-

ating the real nodes with the weak "eigennodes."

The association is based on the strength of connec-

tion between the network layer and the conceptual

layer of "singular nodes" (matrix V). In other words,

for the latter approach, we would first select the

smallest singular value (the weakest "singular

node") and then search for the biggest (in the sense

of absolute value) element in the corresponding

column of V (strongest connection). Next, we zero
the entire row of V in which the element was found.

_-In the case of a covariance or correlation matrix, these
values will be proportional to standard deviation of the
transformed variables (principal components).

This is equivalent to the deletion of the genuine
node in the neural network structure.

With such an approach, the algorithm may occa-

sionally be tempted to remove all biases of the

nodes in the subsequent layer. Since at this stage

of pruning it would be rather beneficial to leave

biases intact, the algorithm may try to remove

another node associated with the weakest "singular

node" or focus on the second weak "singular node."

The same strategy may be exercised if node removal
was unsuccessful. Failure to remove another node

could serve as a stopping criterion which indicates
the fact that no more redundant nodes could be

identified in a given hidden layer using the present

algorithm.

4. Node Post-Removal Retraining

Node removal is an event that usually has a strong

effect on the network performance. Additional

weight adjustment which takes into account target

values (matrix B) and/or the whole network struc-

ture is almost always necessary. In our approach,

full network retraining is always applied after each

node elimination. The elimination is pronounced

successful if the error level prior to node deletion

was regained (or some preset threshold for the error

increase was not exceeded). To help the training

procedure, supplementary, local (in the topological

sense) weight correction is implemented. Hopefully,
this weight correction will place the modified weight

settings closer to the desired solution. For the local

weight update, to compensate node deletion, we
assume that the new weights W 0 should minimize

the norm

min (IIAoWo- BI]2) (16)
w0

where A 0 is the matrix derived from A by zeroing
its column associated with the deleted node. The

criterion (eq. 16) ignores nonlinear transformations
performed by the subsequent hidden layers. For the
A 0 matrix we can write based on equation (13)

A o = USV T (17)

_*guhlt
ValU$

10 a

10_

100

component

10. _ nun',l_r
0 4O

Figure 3. Singular values of the matrix (eq. 11) obtained
from hidden node responses of the unpruned,fully trained
neural network 6-36-6 used to model the six-component
wind tunnel strain gage.

where V0 is obtained from V by zeroing one of its

rows, say the j-th one, that corresponds to the
deleted node. Note that V0 is in general no longer

orthogonal (vTv0 _ I). The loss of this property

prohibits us from employing decomposition (eq. 17)
directly to find the new weights W 0 . Unfortunately,

the correction of the SVD decomposition to com-

pensate for the deleted or zeroed column in A is not

computationally simple (ref. 11). The LS problem

(eq. 16) may be solved using other algorithms, such

as QR, carefully implemented to handle the singu-

larities which are possible even after removing the

weights (unknowns) associated with the deleted

node (the obvious source of singularity).

In our approach we have decided to employ another

SVD decomposition, but applied to a substantially

smaller matrix than A. By substituting equation (17)

in the well known equation ATAoW0 = ATB that

defines the solution to the LS problem, we obtain

(v0ssvJ)w0=v0SUTB (18)

Factorizing the SV T matrix using additional SVD

decomposition, i.e., SV T = UISIV T, the solution

W 0 may be expressed as

W 0 = VISllU1TuTB (19)

where Si"] is calculated in such a way that in the

case of true or numerical singularities (sii = 0),

1/Sii "-->O. No prior elimination of weights

(unknowns) associated with the deleted node in W 0

is necessary.

5. Computational Experiments

The performance of the four pruning methods
discussed above (three variations of the OBS

algorithms and one hybrid SVD/OBS method) has

been evaluated by adjusting the interconnection

pattern of the 6-36-6 feedforward neural network

(6 input sensors, 6 outputs, 474 weights). The
network was trained on 1373 data points to perform

the calibration task of the six-component wind

tunnel strain gage. Table 1 summarizes the results

obtained. Application of the SVD based node

elimination algorithm, before the OBS connection

pruning, produced further reduction in the network

size in comparison with the OBS method alone. The

modeling problem was so specific that the simple
OBS method and its modifications did not remove

any network nodes. The SVD method, however, was

able to identify and successfully delete 5 network
nodes in a somewhat restrictive mode that did not

allow the learning error to increase.

To visualize the effects of pruning, we have chosen

a simpler nonlinear modeling problem:

y(k)= 2.5y(k- 1) sin(Trexp(-u2(k - 1) - y2(k-1)))

+u(k-1)(l+u2(k-1))

(20)

which could be represented in a form of a 3-D plot

as shown in figure 4(A). The system (eq. 20) was

excited by uniformly distributed white noise in the

range (-2, 2). An unpruned, feedforward neural

network model 2-8-8-1 (2 input sensors, 1 output,

105 weights) was trained using 250 data samples

and the Levenberg-Marquardt algorithm (refs. 8

and 12).

The performance of the fully connected model was

compared with its trimmed counterpart produced by

the hybrid SVD/OBS pruning procedure. Remarka-

bly, our method was able to remove 75 weights out

of 105 holding the average training error (mean-

squared error) below 0.002. The SVD approach led

to the removal of 50 weights and 4 nodes in the first

hidden layer. A subsequent application of the modi-

fied OBS pruning method eliminated an additional

25 model parameters using only three inverse

Hessian evaluations. Figure 5 compares the error
surface between the desired and actual network

outputs before and after pruning. Clearly, for

sufficiently probed problems and appropriately

adjusted error levels, the pruning procedure results

in better approximating properties of models having

a smaller number of irrelevant parameters, so the

overfitting could be avoided. Figure 4(B) presents

the response surface of the reduced model.

Table 1. Final results of different pruning algorithms

Modified Modified

Simple OBS Modified OBS OBS+BFGS OBS+SVD

update node pruning

Number of 20 8 9 9

iterations

Total number of
154 168 174 199

weights removed

Number of nodes
0 0 0 5

removed

10,

y(k)

5,

O.

-5.

°10_
2

-5 y(k-l)
-2 -10

10-

yfk)
5.

0-

-5,

-10=
2

° -1

-2 -10

\

-5

(B)

o y(k-l)

Figure 4. Desired response surface (A) of the nonlinear system (eq. 20) and the approximating

output (B) of the neural model tuned using the hybrid SVD/OBS pruning method.

2,_

1,

0

-1 _

2

elk)

u(k-1) 0 _

-2 -10

2 1
(A) | e(k) (B)

1

.o

10 10

-5 y(k-l) u(k.1) O-_y(k.l_

-2 -10

Figure 5. The error surface of the unpruned neural network model (A) and the trimmed
counterpart (B).

6. Conclusions

We have proposed an enhanced strategy for selec-
tion of candidates to be eliminated using the OBS
framework. A careful modification of the basic OBS

algorithm allows its efficiency to increase. We claim
that it is beneficial to combine the OBS connection

pruning with a node removal technique. We propose

applying the SVD based method to accomplish this

task since both algorithms utilize different (also not

conflicting) assumptions and measurements of

network redundancy. The SVD based pruning

algorithm is relatively easy to implement for fully
connected networks and it is reasonable to execute

it before the OBS routine. The SVD based pruning

algorithm tries to select redundant nodes based on

the matrix of node outputs to which an additional

unit column should be appended. It utilizes the

heuristics similar to those used in linear regression
analysis for variable subset selection. We have also

proposed a simple-to-implement, local correction of

the network weights after node removal.

The pruning method presented requires an efficient

training algorithm since the gradually trimmed

network has to be periodically retrained. In our

experiments we have used the Levenberg-Marquardt

algorithm with the predicted error reduction as
described in references 8 and 12.

It is an open question (that will be addressed in the

further studies) which method should be used for

selecting possibly redundant nodes. This issue is

concerned with a strategy of associating the weakest

"singular node" and possibly irrelevant network

neurons. Also, using cross-product, correlation, or

covariance matrices would lead to different eigen-

values and different transformations of the original

coordinate system. As pointed out by Jolliffe in

reference 9, no simple relation exists between

eigenvectors and eigenvalues of these matrices.

Consequently, applying various modifications of

the basic procedure described, one may obtain algo-
rithms that differ in their efficiency and robustness.

Despite these obstacles, however, it is apparent that

the SVD pruning algorithm provides a valuable (if

not indispensable) supplement to the fine weight

pruning performed by the OBS procedure.

10

References

1.

.

.

4.

.

Hassibi, B.; Stork, D.; and Wolff, G. J.: Optimal

Brain Surgeon and General Network Pruning. IEEE

Int. Conf. Neural Networks, San Francisco, 1993,

pp. 293-299.

Stahlberger, A.; and Riedmiller, M.: Fast Network

Pruning and Feature Extraction using Unit-OBS

Algorithm. Advances in Neural Information

Processing Systems, vol. 9, Morgan Kaufmann,

1997, pp. 655-661.

Pedersen, M. W.; Hansen, L. K.; and Larsen, J.:

Pruning with Generalization Based Weigh Saliencies:

"_OBD, _OBS. Advances in Neural Information
Processing Systems, vol. 7, Morgan Kaufmann,

1995, pp. 521-527.

Battiti, R.: First- and Second-Order Methods for

Learning: Between Steepest Descent and Newton's
Method. Neural Computation, vol. 4, 1992,

pp. 141-166.

,_strom, K. J.; and Wittenmark, B.: Computer

Controlled Systems--Theory and Design.
Prentice-Hall, 1984.

.

7.

.

Seber, G. A. F.; and Wild, C. J.: Nonlinear

Regression. John Wiley & Sons, 1989.

Golden, R. M.: Mathematical Methods for Neural

Network Analysis and Design. The MIT Press, 1996.

Fletcher, R.: Practical Methods of Optimization.

John Wiley & Sons, 1987.

9. Jolliffe, I. T.: Principal Component Analysis.

Springer-Verlag, 1986.

10. Psichogios, D. C.; and Ungar, L. H.: SVD-NET:

An Algorithm that Automatically Selects Network
Structure. IEEE Trans. Neural Networks, vol. 5,

no. 3, 1994, pp. 513-515.

11. Bunch, J. R.; and Nielsen, C. P.: Updating the

Singular Value Decomposition. Numer. Math.,

vol. 31, 1978, pp. 111-129.

12. Norgaard, P. M.; Jorgensen, C. C.; and Ross, J.:
Neural Network Prediction of New Aircraft Design

Coefficients. NASA TM- 112 ! 97, May 1997.

11

Form Approved

REPORT DOCUMENTATION PAGE OMBNo ozo4.o as
Public reporting burden for this collection of information is estimated to average t hour per response, incluaing the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503,

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I April 1998 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Toward a More Robust Pruning Procedure for MLP Networks

6. AUTHOR(S)

Slawomir W. Stepniewski* and Charles C. Jorgensen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

519-30-12

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-98-10243

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/TM--1998-112225

11. SUPPLEMENTARYNOTES
Point of Contact: Charles C. Jorgensen, Ames Research Center, MS 269-1, Moffett Field, CA 94035-1000

(650) 604-6725

*Recom Technologies, Inc., Ames Research Center.
12a. DISTRIBUTION/AVAILABILITYSTATEMENT 12b. DISTRIBUTIONCODE

Unclassified -- Unlimited

Subject Category 31

13. ABSTRACT (Maximum 200 words)

Choosing a proper neural network architecture is a problem of great practical importance. Smaller

models mean not only simpler designs but also lower variance for parameter estimation and network predic-

tion. The widespread utilization of neural networks in modeling highlights an issue in human factors. The

procedure of building neural models should find an appropriate level of model complexity in a more or less

automatic fashion to make it less prone to human subjectivity. In this paper we present a Singular Value

Decomposition based node elimination technique and enhanced implementation of the Optimal Brain

Surgeon algorithm. Combining both methods creates a powerful pruning engine that can be used for tuning

feedforward connectionist models. The performance of the proposed method is demonstrated by adjusting

the structure of a multi-input multi-output model used to calibrate a six-component wind tunnel strain gage.

14. SUBJECT TERMS

Neural networks, Pruning, Optimal Brain Surgeon, Principal Component Analysis,

Singular Value Decomposition

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACl

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1S
298-102

